skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    AAA+ proteases degrade intracellular proteins in a highly specific manner.E. coliClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed inE. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. Abstract

    Charge-transfer excitons (CTEs) immensely enrich property-tuning capabilities of semiconducting materials. However, such concept has been remaining as unexplored topic within halide perovskite structures. Here, we report that CTEs can be effectively formed in heterostructured 2D perovskites prepared by mixing PEA2PbI4:PEA2SnI4, functioning as host and guest components. Remarkably, a broad emission can be demonstrated with quick formation of 3 ps but prolonged lifetime of ~0.5 μs. This broad PL presents the hypothesis of CTEs, verified by the exclusion of lattice distortion and doping effects through demonstrating double-layered PEA2PbI4/PEA2SnI4heterostructure when shearing-away PEA2SnI4film onto the surface of PEA2PbI4film by using hand-finger pressing method. The below-bandgap photocurrent indicates that CTEs are vital states formed at PEA2PbI4:PEA2SnI4interfaces in 2D perovskite heterostructures. Electroluminescence shows that CTEs can be directly formed with electrically injected carriers in perovskite LEDs. Clearly, the CTEs presents a new mechanism to advance the multifunctionalities in 2D perovskites.

     
    more » « less
  4. Abstract

    A cobalt silylene (Co=Si) linkage enables a distinct metal/ligand cooperative activation of an organic azide, where nitrene transfer occurs to and from the Co⋅⋅⋅Si linkage without ligand dissociation from the 18‐electron cobalt center. This process utilizes the orthogonal binding affinities of the silicon and cobalt sites to avoid CO poisoning that would otherwise inhibit reactivity, leading to significantly improved catalytic isocyanate generation compared with related systems. The dual‐site approach demonstrates the potential of metal/main‐group bonds to access new and efficient catalytic pathways.

     
    more » « less
  5. Abstract

    A cobalt silylene (Co=Si) linkage enables a distinct metal/ligand cooperative activation of an organic azide, where nitrene transfer occurs to and from the Co⋅⋅⋅Si linkage without ligand dissociation from the 18‐electron cobalt center. This process utilizes the orthogonal binding affinities of the silicon and cobalt sites to avoid CO poisoning that would otherwise inhibit reactivity, leading to significantly improved catalytic isocyanate generation compared with related systems. The dual‐site approach demonstrates the potential of metal/main‐group bonds to access new and efficient catalytic pathways.

     
    more » « less